m
Line 3: Line 3:
 
Are the following irreducible over Q?
 
Are the following irreducible over Q?
  
a) <math>x^5 + 9x^4 + 12x^2 + 6</math>
+
*a) <math>x^5 + 9x^4 + 12x^2 + 6</math>
b) <math>x^4 + x + 1</math>
+
*b) <math>x^4 + x + 1</math>
c) <math>x^4 + 3x^2 + 3</math>
+
*c) <math>x^4 + 3x^2 + 3</math>
d) <math>x^5 + 5x^2 + 1</math>
+
*d) <math>x^5 + 5x^2 + 1</math>
e) <math>(5/2)x^5 + (9/2)x^4 + 15x^3 + (3/7)x^2 + 6x + (3/14)</math>
+
*e) <math>(5/2)x^5 + (9/2)x^4 + 15x^3 + (3/7)x^2 + 6x + (3/14)</math>
  
 
----
 
----

Revision as of 17:25, 8 April 2009


Are the following irreducible over Q?

  • a) $ x^5 + 9x^4 + 12x^2 + 6 $
  • b) $ x^4 + x + 1 $
  • c) $ x^4 + 3x^2 + 3 $
  • d) $ x^5 + 5x^2 + 1 $
  • e) $ (5/2)x^5 + (9/2)x^4 + 15x^3 + (3/7)x^2 + 6x + (3/14) $

a.) Look at Eisenstein's with p = 3.
b.) A polynomial is irreducible in Q if there's a p such that f(x) mod p is irreducible. Look at p = 2.
c.) See part a.
d.) See part b.
e.) Multiply by 14 then see part a.
--Jniederh 22:12, 8 April 2009 (UTC)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood