Line 1: Line 1:
 
[[Category:ECE438Spring2009mboutin]]
 
[[Category:ECE438Spring2009mboutin]]
  
a) <math>h[n] = \frac{1}{8}(\delta[n] + \delta[n-8]) + h[n-1]</math>
+
a) <math>h[n] = \frac{1}{8}(\delta[n] + \delta[n-8]) + h[n-1]</math>--[[User:Kim415|Kim415]] 16:23, 1 March 2009 (UTC)
  
 
b) <math>H(z) = \frac{1}{8} \frac{\prod_{1}^{8}(z - z_{k})}{z - 1}</math>
 
b) <math>H(z) = \frac{1}{8} \frac{\prod_{1}^{8}(z - z_{k})}{z - 1}</math>
 +
 +
This is the only thing that I can figure out. I'm  still working on b) --[[User:Kim415|Kim415]] 16:23, 1 March 2009 (UTC)
 +
 +
c)
 +
 +
I have no idea.--[[User:Kim415|Kim415]] 16:23, 1 March 2009 (UTC)

Revision as of 11:23, 1 March 2009


a) $ h[n] = \frac{1}{8}(\delta[n] + \delta[n-8]) + h[n-1] $--Kim415 16:23, 1 March 2009 (UTC)

b) $ H(z) = \frac{1}{8} \frac{\prod_{1}^{8}(z - z_{k})}{z - 1} $

This is the only thing that I can figure out. I'm still working on b) --Kim415 16:23, 1 March 2009 (UTC)

c)

I have no idea.--Kim415 16:23, 1 March 2009 (UTC)

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn