(New page: Category:ECE608Spring2009ghafoor ==Description== Heap sort is a comparison sort algorithm that orders a list of elements. ==Performance== <table class="wikitable" style="border-s...) |
(No difference)
|
Latest revision as of 19:51, 20 February 2009
Description
Heap sort is a comparison sort algorithm that orders a list of elements.
Performance
Best | Average | Worst |
---|---|---|
$ O(n lg n) $ | $ O(n lg n) $ | $ O(n lg n) $ |
Example
LISP implementation
;Stephen Rudolph ;2/20/09 ;Heap-Sort (defun parent(i) (max (/ (- i (mod i 2)) 2) 1)) (defun right(i) (+ (* 2 i) 1)) (defun left(i) (* 2 i)) (defun set-at-n(A n x) (if (= n 1) (cons x (cdr A)) (cons (car A) (set-at-n (cdr A) (- n 1) x)))) ;;Reverse cdr, return a list containing everything but the last element (defun rcdr(A) (if (= (length A) 1) NIL (append (list (car A)) (rcdr (cdr A))))) ;;Reverse car, return the last element (defun rcar(A) (if (= (length A) 1) (car A) (rcar (cdr A)))) (defun exchange-with-values(A i j x y) (set-at-n (set-at-n A i y) j x)) (defun exchange(A i j) (exchange-with-values A i j (nth (- i 1) A) (nth (- j 1) A))) (defun heapify(A i size) (if (and (<= (left i) size) (> (nth (- (left i) 1) A) (nth (- i 1) A))) (if (and (<= (right i) size) (> (nth (- (right i) 1) A) (nth (- (left i) 1) A))) (heapify (exchange A i (right i)) (right i) size) (heapify (exchange A i (left i)) (left i) size)) (if (and (<= (right i) size) (> (nth (- (right i) 1) A) (nth (- i 1) A))) (heapify (exchange A i (right i)) (right i) size) A))) (defun build-heap-loop(A i) (if (= i 0) A (build-heap-loop (heapify A i (length A)) (- i 1)))) (defun build-heap(A) (build-heap-loop A (floor (/ (length A) 2)))) (defun heap-sort-loop(A i) (if (= i 1) A (append (heap-sort-loop (heapify (rcdr (exchange A 1 i)) 1 (- (length A) 1)) (- i 1)) (list (car A))))) (defun heap-sort(A) (heap-sort-loop (build-heap A) (length A)))