Line 12: Line 12:
 
From the notes, we also know the relationship between <math>\,\! X(w)</math> and <math>\,\! X_s(f)</math>
 
From the notes, we also know the relationship between <math>\,\! X(w)</math> and <math>\,\! X_s(f)</math>
  
*<math>\,\! X(w) = X_s((\frac{w}{2\pi})F_s)</math>
+
<p><math>\,\! X(w) = X_s((\frac{w}{2\pi})F_s)</math></p>
  
 
Rewriting <math>\,\! X_s(f)</math>
 
Rewriting <math>\,\! X_s(f)</math>
  
*<math>\,\! X_s(f) = FsX(f)*\sum_{-\infty}^{\infty}\delta(f-F_sk)</math>
+
<math>\,\! X_s(f) = FsX(f)*\sum_{-\infty}^{\infty}\delta(f-F_sk)</math>
  
Substituting known relation  
+
Substituting known relation
*<math>\,\! X(w) = FsX((\frac{w}{2\pi})F_s)*\sum_{-\infty}^{\infty}\delta((\frac{w}{2\pi})F_s-F_sk)</math>
+
<p><math>\,\! X(w) = FsX((\frac{w}{2\pi})F_s)*\sum_{-\infty}^{\infty}\delta((\frac{w}{2\pi})F_s-F_sk)</math></p>
  
 
Using LTI, rearrange the equation
 
Using LTI, rearrange the equation
*<math>\,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{w}{2\pi})F_s-F_sk)</math>
+
<p><math>\,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{w}{2\pi})F_s-F_sk)</math></p>
  
 
Re-arrange the delta function
 
Re-arrange the delta function
*<math>\,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{F_s}{2\pi})(w-k2\pi))</math>
+
<p><math>\,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{F_s}{2\pi})(w-k2\pi))</math></p>
  
 
Using delta properties, you can take out the <math>(\frac{F_s}{2\pi})</math>
 
Using delta properties, you can take out the <math>(\frac{F_s}{2\pi})</math>
 
+
<p><math>\,\! X(w) =Fs(\frac{2\pi}{F_s}) \sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((w-k2\pi))</math></p>
*<math>\,\! X(w) =Fs(\frac{2\pi}{F_s}) \sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((w-k2\pi))</math>
+
  
 
The <math>F_s</math> will cancel and employ sifting to get
 
The <math>F_s</math> will cancel and employ sifting to get
*<math>\,\! X(w) =2\pi \sum_{-\infty}^{\infty}X((\frac{w-k2\pi}{2\pi})F_s)</math>
+
<p><math>\,\! X(w) =2\pi \sum_{-\infty}^{\infty}X((\frac{w-k2\pi}{2\pi})F_s)</math></p>
  
 
Now you can see how your X(f) is being scaled and shifted
 
Now you can see how your X(f) is being scaled and shifted

Revision as of 11:54, 16 February 2009


Starting with some $ \,\! X(f) $, we want to derive a mathematical expression for $ \,\! X(w) $


Though we already know that it's just some shift/scale version with period 2*pi, here is the math behind it.


We know $ \,\! X_s(f) = FsRep_{Fs}[X(f)] $ from the discussion of $ \,\!x_s(t) = comb_t(x(t)) $


From the notes, we also know the relationship between $ \,\! X(w) $ and $ \,\! X_s(f) $

$ \,\! X(w) = X_s((\frac{w}{2\pi})F_s) $

Rewriting $ \,\! X_s(f) $

$ \,\! X_s(f) = FsX(f)*\sum_{-\infty}^{\infty}\delta(f-F_sk) $

Substituting known relation

$ \,\! X(w) = FsX((\frac{w}{2\pi})F_s)*\sum_{-\infty}^{\infty}\delta((\frac{w}{2\pi})F_s-F_sk) $

Using LTI, rearrange the equation

$ \,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{w}{2\pi})F_s-F_sk) $

Re-arrange the delta function

$ \,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{F_s}{2\pi})(w-k2\pi)) $

Using delta properties, you can take out the $ (\frac{F_s}{2\pi}) $

$ \,\! X(w) =Fs(\frac{2\pi}{F_s}) \sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((w-k2\pi)) $

The $ F_s $ will cancel and employ sifting to get

$ \,\! X(w) =2\pi \sum_{-\infty}^{\infty}X((\frac{w-k2\pi}{2\pi})F_s) $

Now you can see how your X(f) is being scaled and shifted

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison