(New page: Given observation X used to estimate an unknown parameter <math>\theta</math> of distribution <math>f_x(X)</math> (i.e. <math>f_x(X) = </math> some function <math>g(\theta)</math> Conside...)
 
Line 29: Line 29:
  
 
<math>\overset{\land}\theta_{\mbox{MAP}} = \overset{\mbox{argmax}}\theta f_{\theta | X}(\theta | X)</math>
 
<math>\overset{\land}\theta_{\mbox{MAP}} = \overset{\mbox{argmax}}\theta f_{\theta | X}(\theta | X)</math>
 +
 +
Using Bayes' Rule, we can expand the posterior <math>f_{\theta | X}(\theta | X)</math>:
 +
 +
<math>f_{\theta | X}(\theta | X) = \frac{f_{x|\theta}f_\theta(\theta)}{f_X(X)}</math>
 +
 +
<math>\overset{\land}\theta_{\mbox{map}} = \overset{\mbox{argmax}}\theta f_{X | \theta}(X | \theta) F_\theta(\theta)</math>

Revision as of 10:50, 17 November 2008

Given observation X used to estimate an unknown parameter $ \theta $ of distribution $ f_x(X) $ (i.e. $ f_x(X) = $ some function $ g(\theta) $

Consider three expressions (distributions):

1. Likehood:

$ p(X; \theta) $ (discrete)

$ f_x(X; \theta) $ (continuous)

used for MLE: $ \overset{\land}\theta_{ML} = f_x(X | \theta) $

2. Prior:

$ P(\theta) $ (discrete)

$ P_\theta(\theta) $ (continuous)

Indicates some prior knowledge as to what $ \theta $ should be. Prior refers to before seeing observation.

3. Posterior:

$ p(\theta | x) $ (discrete)

$ f_x(\theta, x) $ (continuous)

"Posterior" refers to after seeing observations. Use Posterior to define maximum a-posterior i (map) estimate:

$ \overset{\land}\theta_{\mbox{MAP}} = \overset{\mbox{argmax}}\theta f_{\theta | X}(\theta | X) $

Using Bayes' Rule, we can expand the posterior $ f_{\theta | X}(\theta | X) $:

$ f_{\theta | X}(\theta | X) = \frac{f_{x|\theta}f_\theta(\theta)}{f_X(X)} $

$ \overset{\land}\theta_{\mbox{map}} = \overset{\mbox{argmax}}\theta f_{X | \theta}(X | \theta) F_\theta(\theta) $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva