(New page: 1a/ Given x(t) find X(f) <math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) \quad (1)</math> Using the convolution property <math>X_(f) = \mathcal{F} (cos(\frac{\pi t}{2}))* \mat...) |
|||
Line 23: | Line 23: | ||
Evaluating the statement ( using sifting ) | Evaluating the statement ( using sifting ) | ||
− | <math>X_(f) = sinc(2 (f - \frac{1}{4}) + sinc( 2(f+\frac{1}{4})) | + | <math>X_(f) = sinc(2 (f - \frac{1}{4}) + sinc( 2(f+\frac{1}{4}))</math> |
+ | |||
+ | *<span style="color:red"> Nice and clean justification. Does anybody see a mistake?</span> --[[User:Mboutin|Mboutin]] 16:40, 9 February 2009 (UTC) |
Revision as of 11:40, 9 February 2009
1a/
Given x(t) find X(f)
$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) \quad (1) $
Using the convolution property
$ X_(f) = \mathcal{F} (cos(\frac{\pi t}{2}))* \mathcal{F}(rect(\frac{t}{2})) $
where
$ \mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] $
and
$ \mathcal{F}(rect(\frac{t}{2})) = 2 sinc( 2 f) $
substituting the known transforms into $ \quad (1) $
$ X_(f) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] * 2 sinc( 2 f) $
Evaluating the statement ( using sifting )
$ X_(f) = sinc(2 (f - \frac{1}{4}) + sinc( 2(f+\frac{1}{4})) $
- Nice and clean justification. Does anybody see a mistake? --Mboutin 16:40, 9 February 2009 (UTC)