Line 8: Line 8:
  
 
--[[User:Mlo|Mlo]] 12:03, 13 January 2009 (UTC)
 
--[[User:Mlo|Mlo]] 12:03, 13 January 2009 (UTC)
 +
 +
Link to ECE438 Spring 2009 [https://kiwi.ecn.purdue.edu/rhea/index.php/ECE438_%28BoutinSpring2009%29]
  
 
LaTex editor: http://thornahawk.unitedti.org/equationeditor/equationeditor.php
 
LaTex editor: http://thornahawk.unitedti.org/equationeditor/equationeditor.php

Revision as of 11:19, 9 February 2009

Howdy, My name is Myron Lo and I'm a senior in EE.

I enjoy photography, combat sports, and Minidisc.


Myron guitar.jpg


--Mlo 12:03, 13 January 2009 (UTC)

Link to ECE438 Spring 2009 [1]

LaTex editor: http://thornahawk.unitedti.org/equationeditor/equationeditor.php

Experimenting with inserting formulas to participate in hw discussion

Hw1:

$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) \quad (1) $

Using the convolution property

$ X_(f) = \mathcal{F} (cos(\frac{\pi t}{2}))* \mathcal{F}(rect(\frac{t}{2})) $

where

$ \mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] $

and

$ \mathcal{F}(rect(\frac{t}{2})) = 2 sinc( 2 f) $

substituting the known transforms into $ \quad (1) $

$ X_(f) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] * 2 sinc( 2 f) $

Evaluating the statement ( using sifting )

$ X_(f) = sinc(2 (f - \frac{1}{4}) + sinc( 2(f+\frac{1}{4})) $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal