Line 7: | Line 7: | ||
<math>x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2)</math> | <math>x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2)</math> | ||
*<span style="color:red">Would you know how to compute this FT without a table if asked? </span> --[[User:Mboutin|Mboutin]] 10:45, 9 February 2009 (UTC) | *<span style="color:red">Would you know how to compute this FT without a table if asked? </span> --[[User:Mboutin|Mboutin]] 10:45, 9 February 2009 (UTC) | ||
+ | |||
+ | An answer to this question is stated in the discussion [https://kiwi.ecn.purdue.edu/rhea/index.php/Talk:HW_3_Question_1] | ||
b) | b) |
Revision as of 11:17, 9 February 2009
1 a)
$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $
Based on the Prof Alen's note page 179
$ x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2) $
- Would you know how to compute this FT without a table if asked? --Mboutin 10:45, 9 February 2009 (UTC)
An answer to this question is stated in the discussion [1]
b)
$ x_(t) \,\!= repT[x0_(t)] = \frac {1}{T} \sum_{k} cos(\frac{\pi}{2})rect(\frac{t}{4}) $
Based on the Prof Alen's note page 184
$ x_(f) \,\!= \frac{1}{T}\sum_{k} ( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))( \delta (f - \frac{k}{4})) $