Line 10: Line 10:
 
b)
 
b)
  
<math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2})</math>
+
<math>x_(t) \,\!= repT[x0_(t)] = \frac {1}{T} \sum_{k} cos(\frac{\pi}{2})rect(\frac{t}{4})</math>
  
Based on the Prof Alen's note page 179
+
Based on the Prof Alen's note page 184
  
<math>x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2)</math>
+
<math>x_(f) \,\!= \frac{1}{T}\sum_{k} ( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))( \delta (f - \frac{k}{4}))</math>

Revision as of 17:33, 7 February 2009

1 a)

$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $

Based on the Prof Alen's note page 179

$ x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2) $


b)

$ x_(t) \,\!= repT[x0_(t)] = \frac {1}{T} \sum_{k} cos(\frac{\pi}{2})rect(\frac{t}{4}) $

Based on the Prof Alen's note page 184

$ x_(f) \,\!= \frac{1}{T}\sum_{k} ( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))( \delta (f - \frac{k}{4})) $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal