(New page: 1 a) <math>x_(t) = \cos(pi*2)rect(t/2)</math>) |
|||
Line 1: | Line 1: | ||
1 a) | 1 a) | ||
− | <math>x_(t) = \cos(pi | + | <math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2})</math> |
+ | |||
+ | Based on the Prof Alen's note page 179 | ||
+ | |||
+ | <math>x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2)</math> | ||
+ | |||
+ | |||
+ | b) | ||
+ | |||
+ | <math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2})</math> | ||
+ | |||
+ | Based on the Prof Alen's note page 179 | ||
+ | |||
+ | <math>x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2)</math> |
Revision as of 17:26, 7 February 2009
1 a)
$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $
Based on the Prof Alen's note page 179
$ x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2) $
b)
$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $
Based on the Prof Alen's note page 179
$ x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2) $