(New page: =<math>f_X (x;\lambda)= \lambda e^{-\lambda x}</math>= *to find <math>\hat \lambda_{ml}</math> maximize <math>\lambda e^{-\lambda x} </math> by taking the derivative *<math>-e^{-\hat \...) |
|||
Line 8: | Line 8: | ||
*<math>\hat \lambda x = 1</math> | *<math>\hat \lambda x = 1</math> | ||
− | *<math>\hat \ | + | *<math>\hat \lambda_{ML} = 1/x</math> |
Latest revision as of 06:44, 9 November 2008
$ f_X (x;\lambda)= \lambda e^{-\lambda x} $
- to find $ \hat \lambda_{ml} $ maximize $ \lambda e^{-\lambda x} $ by taking the derivative
- $ -e^{-\hat \lambda x} - \hat \lambda x e^{-\hat \lambda x} = 0 $
- $ \hat \lambda x = 1 $
- $ \hat \lambda_{ML} = 1/x $