Line 2: Line 2:
  
  
* (chihw on HW2Q3) One discussion example: Here is the first step I tried: Break the integration into two separate parts
+
* (Chih-Chun Wang on HW2Q3) One discussion example: Here is the first step I tried: Break the integration into two separate parts
 
<math>\int_{y=-\infty}^\infty\int_{x=-\infty}^\infty e^{-0.1(x+y)}f_X(x)f_Y(y)dxdy=\int_{y=-\infty}^\infty e^{-0.1y}f_Y(y)\left(\int_{x=-\infty}^\infty e^{-0.1x}f_X(x)dx\right)dy</math>
 
<math>\int_{y=-\infty}^\infty\int_{x=-\infty}^\infty e^{-0.1(x+y)}f_X(x)f_Y(y)dxdy=\int_{y=-\infty}^\infty e^{-0.1y}f_Y(y)\left(\int_{x=-\infty}^\infty e^{-0.1x}f_X(x)dx\right)dy</math>

Revision as of 06:26, 23 January 2009

Discussion for HW2

  • (Chih-Chun Wang on HW2Q3) One discussion example: Here is the first step I tried: Break the integration into two separate parts

$ \int_{y=-\infty}^\infty\int_{x=-\infty}^\infty e^{-0.1(x+y)}f_X(x)f_Y(y)dxdy=\int_{y=-\infty}^\infty e^{-0.1y}f_Y(y)\left(\int_{x=-\infty}^\infty e^{-0.1x}f_X(x)dx\right)dy $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett