Line 103: Line 103:
 
   <li>Periodic vs. non-periodic
 
   <li>Periodic vs. non-periodic
 
   <ul><li> if <math>\exists</math> positive T such that x(t+T) = x(t),<math>\forall t</math> then we say that x(t) is periodic with period T</li></ul>
 
   <ul><li> if <math>\exists</math> positive T such that x(t+T) = x(t),<math>\forall t</math> then we say that x(t) is periodic with period T</li></ul>
 +
  </li>
 +
</ul>
 +
 +
== ECE438 Course Notes January 16, 2009 ==
 +
 +
<p><strong>Todays Goals</strong>
 +
  <ul>
 +
    <li>Signal Characteristics</li>
 +
    <li>Signal Transformations</li>
 +
    <li>Special Signals</li>
 +
    <li>Singularity Functions</li>
 +
  </ul>
 +
</p>
 +
 +
<p><strong>right sided signal: </strong><br/>
 +
<math>\exists t_{min} (n_{min})</math> such that <math>x(t) = 0</math> when <math>t < t_{min}</math>
 +
</p>
 +
 +
<p><strong>left sided signal: </strong><br/>
 +
<math>\exists t_{max} (n_{max})</math> such that <math>x(t) = 0</math> when <math>t > t_{max}</math><br/>
 +
if <math>t_{max} \leq 0</math> we say the signal is <u>anticausal</u>
 +
</p>
 +
 +
<p><strong>two sided (mixed causal):</strong><br/>
 +
neither left sided nor right sided
 +
</p>
 +
 +
<p><strong>Finite Duration Signal: </strong><br/>
 +
both right and left sided, <math>\exists t_{min},t_{max}</math> such that <math>x(t) = 0</math> for <math>t > t_{max}</math> and <math>t < t_{min}</math>
 +
</p>
 +
 +
<h3>Signal Metrics</h3>
 +
<br/>
 +
<ul style="list-style:none;">
 +
  <li><strong>Signal Energy</strong>
 +
    <ul style="list-style:none;">
 +
      <li>
 +
        <p><math>E_x = \int_{-\infty}^{\infty} |x(t)|^2\,dt</math> for ct (continuous time)</p>
 +
        <p><math>E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2</math> for dt (discrete time)</p>
 +
      </li>
 +
    </ul>
 +
  </li>
 +
  <li><strong>Signal Power</strong>
 +
    <ul style="list-style:none;">
 +
      <li>
 +
        <p><math>P_x = \lim_{T \Rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x(t)|^2\,dt</math> for ct (continuous time)</p>
 +
        <p><math>P_x = \lim_{N \Rightarrow \infty}\sum_{n=-N}^{N} |x(n)|^2</math> for ct (continuous time)</p>
 +
        <p>note: for periodic signals <br/>
 +
        <math>P_x = \frac{1}{N}\sum_{n=0}^{N-1}|x(n)|^2</math>
 +
        </p>
 +
      </li>
 +
    </ul>
 +
  </li>
 +
  <li><strong>Signal RMS (root-mean-square)</strong>
 +
    <ul style="list-style:none;">
 +
      <li>
 +
      <math>X_{rms} = \sqrt{P_x}</math>
 +
      </li>
 +
    </ul>
 +
  </li>
 +
  <li><strong>Signal Magnitude</strong>
 +
    <ul style="list-style:none;">
 +
      <li>
 +
        <p><math>m_x = max|x(t)|</math>, for CT</p>
 +
        <p><math>m_x = max|x(n)|</math>, for DT</p>
 +
        <p> if <math>m_x < \infty</math>, we say signal is bounded</p>
 +
      </li>
 +
    </ul>
 +
  </li>
 +
  <li><strong>Scaling (<math>y(t) = x(\frac{t}{a})</math>)</strong>
 +
    <ul style="list-style:none;">
 +
      <li>
 +
        <p>note: y(0) = x(0), fixed point at t=0<br/>
 +
        if a > 1, graph will narrow<br/>
 +
        if a < 1, graph will expand<br/><br/>
 +
        <font style="color:red;">if a>1 will not work for digital signals</font>
 +
        </p><br/>
 +
        <p><strong>Down Sampler:</strong><br/>
 +
          <math>y(n) = x(Dn)</math>, D = integer > 1<br/>
 +
          <math>x(n) \Rightarrow D\Downarrow \Rightarrow y(n)</math>
 +
        </p>
 +
        <p><strong>Up Sampler:</strong> <math>x(n) \Rightarrow D\Uparrow \Rightarrow y(n)</math><br/>
 +
          <math>y(n) = x(\frac{n}{D})</math>, if n/D is an integer
 +
        </p>
 +
        <p><strong>Scaling and Shifting</strong> <math>y(t) = x(\frac{t}{a}-t_0)</math><br/>
 +
          note: <math>y(0) = x(-t_0)</math>
 +
        </p>
 +
      </li>
 +
    </ul>
 
   </li>
 
   </li>
 
</ul>
 
</ul>

Revision as of 07:38, 20 January 2009


ECE438 Course Notes January 14, 2009

1)Definitions

ECE438 is about digital signals and systems

2) Digital Signal = a signal that can be represented by a sequence of 0's and 1's.

so the signal must be DT X(t) = t, i.e. need x(n), n belongs to Z

Signal values must be discrete

-$ x(n) \in {0,1} $ <-- binary valued signal
$ x(n) \in {0,1,2,...,255} $ <-- gray scale valued signal


Another example of digital signal

-the pixels in a bitmap image (grayscale) can have a value of 0,1,2,...,255 for each individual pixel. --If you concatenate all the rows of the image you can convert it to a 1 dimensional signal. i.e. $ x = (row1,row2,row3) $

2D Digital signal = signal that can be represented by an array of 0's and 1's

example: 128x128 gray scale image
$ p_{ij} \in {0,...,255} $

matrix $ A_{ij} = p_{ij} $ of size 128x128

Vip logo.jpg

Digital signals play an important roll in forensics applications such as: watermarking, image identification, and forgery detection among many others. Go to PSAPF and VIP's Sensor Forensics to find out more information about these applications.

Digital Systems = system that can process a ditital signal.
E.g.

  • Software (MATLAB,C, ...)
  • Firmware
  • Digital Hardware

Advantages of Digital Systems

  • precise,reproducable
  • easier to store data
  • easier to build:
    • just need to represent 2 states instead of a continuous range of values

Software based digital systems

  • easier to build
  • cheap to build
  • adaptable
  • easy to fix/upgrade

Hardware-based digital systems

  • fast.

Continuous time world

  • most natural signals live here
  • things are easy to write, understand, conceptualize

Digital World

  • digital media signals live here along with computers, MATLAB, digital circuits

These world are brought together using sampling & quantization, as well as reconstruction

Signal Characteristics

  • Deterministic vs. random
    • x(t) well defined , s.a. $ x(t) = e^{j\pi t} $
    • x(n) well defined , s.a. $ x(n) = j^{n} $
      ex: Lena's image
  • Random
    • x(t) drawn according to some distribution
    • example: x(t) white noise
      x = rand(10) (almost) random
  • Periodic vs. non-periodic
    • if $ \exists $ positive T such that x(t+T) = x(t),$ \forall t $ then we say that x(t) is periodic with period T

ECE438 Course Notes January 16, 2009

Todays Goals

  • Signal Characteristics
  • Signal Transformations
  • Special Signals
  • Singularity Functions

right sided signal:
$ \exists t_{min} (n_{min}) $ such that $ x(t) = 0 $ when $ t < t_{min} $

left sided signal:
$ \exists t_{max} (n_{max}) $ such that $ x(t) = 0 $ when $ t > t_{max} $
if $ t_{max} \leq 0 $ we say the signal is anticausal

two sided (mixed causal):
neither left sided nor right sided

Finite Duration Signal:
both right and left sided, $ \exists t_{min},t_{max} $ such that $ x(t) = 0 $ for $ t > t_{max} $ and $ t < t_{min} $

Signal Metrics


  • Signal Energy
    • $ E_x = \int_{-\infty}^{\infty} |x(t)|^2\,dt $ for ct (continuous time)

      $ E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2 $ for dt (discrete time)

  • Signal Power
    • $ P_x = \lim_{T \Rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x(t)|^2\,dt $ for ct (continuous time)

      $ P_x = \lim_{N \Rightarrow \infty}\sum_{n=-N}^{N} |x(n)|^2 $ for ct (continuous time)

      note: for periodic signals
      $ P_x = \frac{1}{N}\sum_{n=0}^{N-1}|x(n)|^2 $

  • Signal RMS (root-mean-square)
    • $ X_{rms} = \sqrt{P_x} $
  • Signal Magnitude
    • $ m_x = max|x(t)| $, for CT

      $ m_x = max|x(n)| $, for DT

      if $ m_x < \infty $, we say signal is bounded

  • Scaling ($ y(t) = x(\frac{t}{a}) $)
    • note: y(0) = x(0), fixed point at t=0
      if a > 1, graph will narrow
      if a < 1, graph will expand

      if a>1 will not work for digital signals


      Down Sampler:
      $ y(n) = x(Dn) $, D = integer > 1
      $ x(n) \Rightarrow D\Downarrow \Rightarrow y(n) $

      Up Sampler: $ x(n) \Rightarrow D\Uparrow \Rightarrow y(n) $
      $ y(n) = x(\frac{n}{D}) $, if n/D is an integer

      Scaling and Shifting $ y(t) = x(\frac{t}{a}-t_0) $
      note: $ y(0) = x(-t_0) $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva