(New page: <math> \delta(t) = \lim_{\epsilon\rightarrow0} \frac{1}{\epsilon}\left[u(t+\epsilon/2) - u(t-\epsilon/2)\right], </math> where <math>u(t) = 0</math> for <math>t<0</math> and <math>u(t)=1<...)
 
Line 5: Line 5:
  
 
where <math>u(t) = 0</math> for <math>t<0</math> and <math>u(t)=1</math> for <math>t\geq0</math>
 
where <math>u(t) = 0</math> for <math>t<0</math> and <math>u(t)=1</math> for <math>t\geq0</math>
 +
 +
[[Category:ECE301Spring2009lehnert]]
 +
[[Category:Delta Function]]

Revision as of 05:41, 13 January 2009

$ \delta(t) = \lim_{\epsilon\rightarrow0} \frac{1}{\epsilon}\left[u(t+\epsilon/2) - u(t-\epsilon/2)\right], $

where $ u(t) = 0 $ for $ t<0 $ and $ u(t)=1 $ for $ t\geq0 $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett