Line 2: Line 2:
  
 
GF(p^n) are the only fields we need to worry about, so we just need to find the smallest field of this form that has exactly 6 subfields.  Since GF(p^n) has exactly one subfield per divisor of n, we are looking at the smallest field GF(p^n) such that n has exactly 6 divisors.  Just enumerate the divisors of n's and you should find the smallest n that has 6 divisors.  See Theorem 22.3. -Josh
 
GF(p^n) are the only fields we need to worry about, so we just need to find the smallest field of this form that has exactly 6 subfields.  Since GF(p^n) has exactly one subfield per divisor of n, we are looking at the smallest field GF(p^n) such that n has exactly 6 divisors.  Just enumerate the divisors of n's and you should find the smallest n that has 6 divisors.  See Theorem 22.3. -Josh
 
==
 
  
 
So what did you get as an answer? I got n=12.
 
So what did you get as an answer? I got n=12.

Revision as of 16:55, 10 December 2008

Do any of you have any helpful hints? That would be lovely.

GF(p^n) are the only fields we need to worry about, so we just need to find the smallest field of this form that has exactly 6 subfields. Since GF(p^n) has exactly one subfield per divisor of n, we are looking at the smallest field GF(p^n) such that n has exactly 6 divisors. Just enumerate the divisors of n's and you should find the smallest n that has 6 divisors. See Theorem 22.3. -Josh

So what did you get as an answer? I got n=12.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett