Line 20: Line 20:
  
 
I used a similar method found above.  I knew that |S_3| = 3! and |A_3| = 3!/2 and the index of these two was |A_3|/|S_3| which gives you an index of 2.  Then I remembered a previous problem I did on this hw and remembered that if a subgroup has order 2 then the group is normal.  In this case the subgroup was S_3 and A_3 was the group.  Therefore A_3 and S_3 are normal
 
I used a similar method found above.  I knew that |S_3| = 3! and |A_3| = 3!/2 and the index of these two was |A_3|/|S_3| which gives you an index of 2.  Then I remembered a previous problem I did on this hw and remembered that if a subgroup has order 2 then the group is normal.  In this case the subgroup was S_3 and A_3 was the group.  Therefore A_3 and S_3 are normal
 +
 +
[[Image:q2_MA453Fall2008walther.jpg]]

Revision as of 02:52, 2 October 2008

Prove that A_3 inside S_3 is normal.

To prove this use the definition that if a group is normal then as a collection left cosets equal right cosets.

I used S_3 to equal a symmetric triangle with {1,l,r,a,b,c} A_3 the group of even permutations in S_3 which are {1,l,r}


Right Cosets Left Cosets A_3 * 1 1 * A_3

--Robertsr 19:58, 1 October 2008 (UTC)


I used what we proved in Ch 9 problem 7 to prove this. In that problem, we proved that if H has index 2 in G, then H is normal in G. A_3 has index 2 in S_3 because by Corollary 1 of Lagrange's Theorem, the index of H in G = |G|/|H|. In this case, G = S_3 and H = A_3. We know that |S_3| = 3!, and by Theorem 5.7 we know that |A_3| = 3!/2. Therefore, the index of A_3 in S_3 = 3!/(3!/2) = 2, and A_3 is normal in S_3.



I used a similar method found above. I knew that |S_3| = 3! and |A_3| = 3!/2 and the index of these two was |A_3|/|S_3| which gives you an index of 2. Then I remembered a previous problem I did on this hw and remembered that if a subgroup has order 2 then the group is normal. In this case the subgroup was S_3 and A_3 was the group. Therefore A_3 and S_3 are normal

Q2 MA453Fall2008walther.jpg

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch