Line 23: Line 23:
  
 
-Wooi-Chen
 
-Wooi-Chen
 +
 +
-----
 +
I think if you prove its cyclic the inverse will always be the same
 +
 +
-Matt

Revision as of 10:43, 17 September 2008

How do you prove that an element and its inverse have the same order? I understand the idea but do not know how to prove it.

-Wooi-Chen



I thought this worked as a proof.

$ g^k=1 $ element g having order of k

$ (g^k)^{-1}=(1)^{-1} $

$ g^{-k}=1 $

$ (g^{-1})^k=1 $ inverse of g having order of k

This could be wrong, but it makes sense.

-Daniel


That actually makes sense to me as well. It is kind of playing with the order which power comes, that's the idea I get.

-Wooi-Chen


I think if you prove its cyclic the inverse will always be the same

-Matt

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett