Line 2: | Line 2: | ||
We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math> | We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math> | ||
+ | |||
+ | |||
+ | == Using Induction == | ||
+ | |||
+ | '''Base case:''' <br> | ||
+ | n=0: <math>2^0=1</math> Subsets with 0 elements: {∅} <br> | ||
+ | n=1: <math>2^1=2</math> Subsets with 1 elements: {∅}, {1} | ||
+ | |||
+ | So we can assume a set ''S'' with ''n'' elements has ''2^n'' subsets. | ||
+ | |||
+ | n+1: <math>2^(n+1) = 2^1 + 2^n = 2*2^n = 2^(n+1)</math> | ||
+ | |||
+ | -Jesse Straeter | ||
+ | |||
+ | ---- |
Revision as of 09:45, 7 September 2008
Using Binomial Theorem, $ (a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n $.
We have $ \binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n $
Using Induction
Base case:
n=0: $ 2^0=1 $ Subsets with 0 elements: {∅}
n=1: $ 2^1=2 $ Subsets with 1 elements: {∅}, {1}
So we can assume a set S with n elements has 2^n subsets.
n+1: $ 2^(n+1) = 2^1 + 2^n = 2*2^n = 2^(n+1) $
-Jesse Straeter