Line 1: Line 1:
Suppose that f(a)=g(a)=0 and that f and g are differentiable on an open interval <i>I</i> containing a. <br>
+
Suppose that <math>f(a)=g(a)=0</math> and that f and g are differentiable on an open interval <i>I</i> containing a. <br>
 
Suppose also that <math>g'(x)\neq0</math> on <i>I</i> if <math>x\neq a</math>. <br>
 
Suppose also that <math>g'(x)\neq0</math> on <i>I</i> if <math>x\neq a</math>. <br>
 
Then <br>
 
Then <br>

Latest revision as of 11:50, 4 September 2008

Suppose that $ f(a)=g(a)=0 $ and that f and g are differentiable on an open interval I containing a.
Suppose also that $ g'(x)\neq0 $ on I if $ x\neq a $.
Then
$ \lim_{x \to\ a}\frac{f(x)}{g(x)}= \lim_{x \to\ a}\frac{f'(x)}{g'(x)} $,
if the limit on the right exists (or is $ \infty $ or -$ \infty $ ).

This is Elizabeth's favorite theorem.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett