Line 3: Line 3:
 
\displaystyle\lim_{x\to\a}\frac{f(x)}{g(x)}=\displaystyle\lim_{x\to\a}\frac{f'(x)}{g'(x)}
 
\displaystyle\lim_{x\to\a}\frac{f(x)}{g(x)}=\displaystyle\lim_{x\to\a}\frac{f'(x)}{g'(x)}
 
</math>,
 
</math>,
if the limis on the right exists (or is positive or negative infinity).
+
if the limis on the right exists (or is <math>infty</math>).
  
 
This is Elizabeth's favorite theorem.
 
This is Elizabeth's favorite theorem.

Revision as of 09:14, 4 September 2008

Suppose that f(a)=g(a)=0 and that f and g are differentiable on an open interval I containing a. Suppose also that g'(x)/=0 on I if x/=a. Then $ \displaystyle\lim_{x\to\a}\frac{f(x)}{g(x)}=\displaystyle\lim_{x\to\a}\frac{f'(x)}{g'(x)} $, if the limis on the right exists (or is $ infty $).

This is Elizabeth's favorite theorem.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett