(New page: Suppose that f(a)=g(a)=0 and that f and g are differentiable on an open interval <i>I</i> containing a. Suppose also that g'(x)/=0 on <i>I</i> if x/=a. Then \displaystyle\lim_{x\to\a}\fr...) |
|||
Line 1: | Line 1: | ||
Suppose that f(a)=g(a)=0 and that f and g are differentiable on an open interval <i>I</i> containing a. Suppose also that g'(x)/=0 on <i>I</i> if x/=a. Then | Suppose that f(a)=g(a)=0 and that f and g are differentiable on an open interval <i>I</i> containing a. Suppose also that g'(x)/=0 on <i>I</i> if x/=a. Then | ||
+ | <math> | ||
\displaystyle\lim_{x\to\a}\frac{f(x)}{g(x)}=\displaystyle\lim_{x\to\a}\frac{f'(x)}{g'(x)} | \displaystyle\lim_{x\to\a}\frac{f(x)}{g(x)}=\displaystyle\lim_{x\to\a}\frac{f'(x)}{g'(x)} | ||
− | , | + | </math>, |
if the limis on the right exists (or is positive or negative infinity). | if the limis on the right exists (or is positive or negative infinity). | ||
This is Elizabeth's favorite theorem. | This is Elizabeth's favorite theorem. |
Revision as of 09:13, 4 September 2008
Suppose that f(a)=g(a)=0 and that f and g are differentiable on an open interval I containing a. Suppose also that g'(x)/=0 on I if x/=a. Then $ \displaystyle\lim_{x\to\a}\frac{f(x)}{g(x)}=\displaystyle\lim_{x\to\a}\frac{f'(x)}{g'(x)} $, if the limis on the right exists (or is positive or negative infinity).
This is Elizabeth's favorite theorem.