(New page: =Problem 4.4= ===a=== <math> X_1\big(j\omega) = 2\pi \delta(\omega) + \pi \delta(\omega - 4\pi) + \pi \delta(\omega + 4 \pi) </math> Apply the inverse fourier transform integral: :<math>...)
 
(Problem 4.4)
 
Line 1: Line 1:
 +
{{:HWSolnNav}}
 +
 
=Problem 4.4=
 
=Problem 4.4=
  

Latest revision as of 11:10, 12 December 2008

HWSolnNav

Problem 4.4

a

$ X_1\big(j\omega) = 2\pi \delta(\omega) + \pi \delta(\omega - 4\pi) + \pi \delta(\omega + 4 \pi) $

Apply the inverse fourier transform integral:

$ x_1(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty}\Big(2\pi \delta(\omega)e^{-j\omega t}\Big)\,d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\Big(\pi \delta(\omega - 4\pi)e^{-j\omega t} + \pi \delta(\omega + 4 \pi)e^{-j\omega t}\Big)\,d\omega $

Cancel the pi:

$ x_1(t) = \int_{-\infty}^{\infty}\Big(\delta(\omega)e^{-j\omega t}\Big)\,d\omega + \frac{1}{2}\int_{-\infty}^{\infty}\Big( \delta(\omega - 4\pi)e^{-j\omega t} + \delta(\omega + 4 \pi)e^{-j\omega t}\Big)\,d\omega $

Apply the sifting property:

$ x_1(t) = e^{0} + \frac{1}{2}\Big( e^{-4\pi j t} + e^{4\pi j t}\Big) $

Simplify using euler's formula

$ x_1(t) = 1 + cos\big(4\pi t) $

b

$ X_2\big(j\omega) = \begin{cases} 2, \,\,\,\,\,\,\,\, 0 \le \omega \le 2 \\ -2,\,\, -2 \le \omega < 0 \\ 0,\,\,\,\,\,\, |\omega| > 2 \end{cases} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett