(Basic definition of the Z-Transform)
(Basic definition of the Z-Transform)
Line 1: Line 1:
 
== Basic definition of the Z-Transform ==
 
== Basic definition of the Z-Transform ==
The Z-transform of a sequence is defined as <math>H(z) = \sum^{\infty}_{n = -\infty} h[n]z^{-n}\</math>
+
The Z-transform of a sequence is defined as <math>H(z) = \sum^{\infty}_{n = -\infty} h[n]z^{-n}</math>

Revision as of 16:13, 3 December 2008

Basic definition of the Z-Transform

The Z-transform of a sequence is defined as $ H(z) = \sum^{\infty}_{n = -\infty} h[n]z^{-n} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva