Line 16: Line 16:
  
 
:<math>X(Z) = \sum_{m=1}^{\infty}-\frac{z^m}{2^{-m}}</math>
 
:<math>X(Z) = \sum_{m=1}^{\infty}-\frac{z^m}{2^{-m}}</math>
 +
 +
:<math>X(Z) = -\sum_{m=1}^{\infty}(2z)^{m}</math>
 +
 +
:<math>X(Z) = -\left(\sum_{m=0}^{\infty}(2z)^{m}-1\right)</math>

Revision as of 16:28, 28 November 2008

This page would give an example of how to perform the z-transform.

Suppose

$ x[n] = \frac{-u[-n-1]}{2^n} $

Using the definition of z-transform:

$ X(Z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n} $
$ X(Z) = \sum_{n=-\infty}^{\infty}\frac{-u[-n-1]}{2^n}z^{-n} $
$ X(Z) = \sum_{n=-\infty}^{-1}-\frac{z^{-n}}{2^n} $

by letting m = -n

$ X(Z) = \sum_{m=1}^{\infty}-\frac{z^m}{2^{-m}} $
$ X(Z) = -\sum_{m=1}^{\infty}(2z)^{m} $
$ X(Z) = -\left(\sum_{m=0}^{\infty}(2z)^{m}-1\right) $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn