(New page: This page would give an example of how to perform the z-transform. Suppose <math>x[n] = \frac{-u[-n-1]}{2^n}</math> Using the definition of z-transform: :<math>X(Z) = \sum_{n=-\infty}...) |
|||
Line 7: | Line 7: | ||
Using the definition of z-transform: | Using the definition of z-transform: | ||
− | :<math>X(Z) = \sum_{n=-\infty}^{\infty}x[n]z^-n<math> | + | :<math>X(Z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n}</math> |
+ | |||
+ | :<math>X(Z) = \sum_{n=-\infty}^{\infty}\frac{-u[-n-1]}{2^n}z^{-n}</math> | ||
+ | |||
+ | :<math>X(Z) = \sum_{n=-\infty}^{-1}-\frac{z^{-n}}{2^n}</math> | ||
+ | |||
+ | by letting m = -n | ||
+ | |||
+ | :<math>X(Z) = \sum_{m=1}^{\infty}-\frac{z^m}{2^{-m}}</math> |
Revision as of 16:24, 28 November 2008
This page would give an example of how to perform the z-transform.
Suppose
$ x[n] = \frac{-u[-n-1]}{2^n} $
Using the definition of z-transform:
- $ X(Z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n} $
- $ X(Z) = \sum_{n=-\infty}^{\infty}\frac{-u[-n-1]}{2^n}z^{-n} $
- $ X(Z) = \sum_{n=-\infty}^{-1}-\frac{z^{-n}}{2^n} $
by letting m = -n
- $ X(Z) = \sum_{m=1}^{\infty}-\frac{z^m}{2^{-m}} $