Line 17: Line 17:
 
:<math>X(s) = \int^{0}_{-\infty}-e^{-(2+a)t}e^{-jwt}dt</math>
 
:<math>X(s) = \int^{0}_{-\infty}-e^{-(2+a)t}e^{-jwt}dt</math>
  
:<math>X(s) = -\frac{e^{-(2+a)t}e^{-jwt}}{-(2+a+jw)}
+
:<math>X(s) = \left[-\frac{e^{-(2+a)t}e^{-jwt}}{-(2+a+jw)}\right]^{0}_{-\infty}</math>
 +
 
 +
From that, we can conclude that if <math>2 + a</math> is greater or equal to 0 then the integral diverges. Else:
 +
 
 +
:<math>X(s) = -\frac{1}{-(2+a+jw)} - 0</math>
 +
 
 +
:<math>X(s) = \frac{1}{2+s}</math>

Latest revision as of 13:35, 23 November 2008

This page shows an example of LT transform computation

let $ x(t) = -e^{-2t}u(-t) $

then

$ X(s) = \int^{\infty}_{-\infty}x(t)e^{-st}dt $
$ X(s) = \int^{\infty}_{-\infty}-e^{-2t}u(-t)e^{-st}dt $
$ X(s) = \int^{0}_{-\infty}-e^{-2t}e^{-st}dt $

Now let $ s = a + jw $

$ X(s) = \int^{0}_{-\infty}-e^{-2t}e^{-(a+jw)t}dt $
$ X(s) = \int^{0}_{-\infty}-e^{-(2+a)t}e^{-jwt}dt $
$ X(s) = \left[-\frac{e^{-(2+a)t}e^{-jwt}}{-(2+a+jw)}\right]^{0}_{-\infty} $

From that, we can conclude that if $ 2 + a $ is greater or equal to 0 then the integral diverges. Else:

$ X(s) = -\frac{1}{-(2+a+jw)} - 0 $
$ X(s) = \frac{1}{2+s} $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010