(`) |
|||
Line 16: | Line 16: | ||
Note: the last equality (with a *) is untrue. Please do not write this on the test or you will get points marked off. I really appreciate this mistake being on Rhea, please do not erase it --[[User:Mboutin|Mboutin]] 11:58, 21 November 2008 (UTC) | Note: the last equality (with a *) is untrue. Please do not write this on the test or you will get points marked off. I really appreciate this mistake being on Rhea, please do not erase it --[[User:Mboutin|Mboutin]] 11:58, 21 November 2008 (UTC) | ||
+ | Correction of above: | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | X(s) &= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt, \\ | ||
+ | &= \int_{0}^{\infty}{e^{-at}}{e^{-st}}dt ,\text{ let } s=b+j\omega, \\ | ||
+ | &=\int_{0}^{\infty}{e^{-(a+b+j\omega)t}}dt, \\ | ||
+ | \end{align} | ||
+ | </math> | ||
+ | If <math>a+b\leq 0</math>, | ||
+ | then the integral Diverges | ||
+ | |||
+ | Else, | ||
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | X(s) &=\frac{e^{-(a+b)t}e^{-j\omega t}}{-(a+b+j\omega)}|_0^\infty, \\ | ||
+ | &=0-\frac{-1}{s+a}, \\ | ||
+ | &=\frac{1}{s+a} | ||
+ | \end{align} | ||
+ | </math> | ||
* [[Homework _ECE301Fall2008mboutin#10 Daniel Morris: Properties of the Region of Convergence(ROC)]] | * [[Homework _ECE301Fall2008mboutin#10 Daniel Morris: Properties of the Region of Convergence(ROC)]] |
Revision as of 15:50, 21 November 2008
== Fundamentals of Laplace Transform ==
Let the signal be:
$ x(t) =e^ {-at} \mathit{u} (t). $ Here is how to compute the Laplace Transform of $ x(t) $:
$ \begin{align} X(s) &= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt, \\ &= \int_{-\infty}^{\infty}{e^{-at}}{e^{-st}}dt ,\text{ since }\mathit{u} (t)=1,\text{ for }t>0, \text{ else }\mathit{u} (t)=0, \\ &=\frac{1}{s+a}. ~^* \end{align} $
Note: the last equality (with a *) is untrue. Please do not write this on the test or you will get points marked off. I really appreciate this mistake being on Rhea, please do not erase it --Mboutin 11:58, 21 November 2008 (UTC)
Correction of above:
$ \begin{align} X(s) &= \int_{-\infty}^{\infty}x(t){e^{-st}}\, dt, \\ &= \int_{0}^{\infty}{e^{-at}}{e^{-st}}dt ,\text{ let } s=b+j\omega, \\ &=\int_{0}^{\infty}{e^{-(a+b+j\omega)t}}dt, \\ \end{align} $
If $ a+b\leq 0 $,
then the integral Diverges
Else,
$ \begin{align} X(s) &=\frac{e^{-(a+b)t}e^{-j\omega t}}{-(a+b+j\omega)}|_0^\infty, \\ &=0-\frac{-1}{s+a}, \\ &=\frac{1}{s+a} \end{align} $