Line 1: Line 1:
 
==Cumulative Density Function (CDF)==
 
==Cumulative Density Function (CDF)==
* FX(x) = P(X <= x) = integral(-inf to inf) fX(y) dy
+
* <math>F_X(x) = P[X <= x] = \int_{-\infty}^{\infty} f_x(t)dt</math>
* 1 - FX(x) = P(X > x)
+
* <math>1 - F_X(x) = P[X > x]</math>
+
  lim<sub>x-> -inf</sub> F<sub>X</sub>(x) = 0
+
  lim<sub>x-> inf</sub> F<sub>X</sub>(x) = 1
+
  
 +
<math>\lim_{x\rightarrow-\infty}f_X(x) = 0 </math>
 +
 +
<math>\lim_{x\rightarrow\infty}f_X(x) = 1 </math>
 +
  
 
==Exponential RV==
 
==Exponential RV==

Revision as of 17:07, 21 October 2008

Cumulative Density Function (CDF)

  • $ F_X(x) = P[X <= x] = \int_{-\infty}^{\infty} f_x(t)dt $
  • $ 1 - F_X(x) = P[X > x] $

$ \lim_{x\rightarrow-\infty}f_X(x) = 0 $

$ \lim_{x\rightarrow\infty}f_X(x) = 1 $


Exponential RV

PDF: fX(x) = $ \lambda*e^{-\lambda*x} $, x >= 0 ; fX(x) = 0 , else

CDF: FX(x) = $ 1-e^{-\lambda*x} $

  • E[X] = 1/$ \lambda $ , var(X) = 1/($ \lambda)^2 $

Gaussian RV

  • The sum of many, small independent things
  • Parameters:

$ E[X]=\mu $ $ Var[X]=\sigma^2 $

$ f_X(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}} $


PDF Properties

  • $ f_X(x)\geq 0 $ for all x
  • $ \int\limits_{-\infty}^{\infty}f_X(x)dx = 1 $
  • If $ \delta $ is very small, then
 $  P([x,x+\delta]) \approx f_X(x)\cdot\delta $
  • For any subset B of the real line,
 $  P(X\in B) = \int\limits_Bf_X(x)dx  $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin