(Brian Thomas Rhea hw9 (part 3))
 
 
Line 1: Line 1:
<math>\mathcal{L}(x(t)) = \int_{-\infty}^\infty x(t) e^{-st} dt</math>
+
<math>\mathcal{L}(x(t)) = X(s) = \int_{-\infty}^\infty x(t) e^{-st} dt</math>

Latest revision as of 18:29, 17 November 2008

$ \mathcal{L}(x(t)) = X(s) = \int_{-\infty}^\infty x(t) e^{-st} dt $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett