Line 3: Line 3:
 
<math>r(n)= x(n)*cos^2(n \theta)= \frac{1}{2} x(n) + \frac{1}{2}x(n)*cos(2n\theta)</math><br>
 
<math>r(n)= x(n)*cos^2(n \theta)= \frac{1}{2} x(n) + \frac{1}{2}x(n)*cos(2n\theta)</math><br>
  
<math>x(t)*cos(\frac{\pi t}{4})</math> &rArr; <math>\frac{1}{2}[X(e^{j(\theta - \pi/4)})  
+
<math>X(e^{j\theta))
+ X(e^{j(\theta + \pi/4)}) ]</math>.<br>
+
+ X(e^{j(\theta)</math>
  
 
[[Image:Hw9_ECE301Fall2008mboutin.JPG]]
 
[[Image:Hw9_ECE301Fall2008mboutin.JPG]]

Revision as of 11:27, 17 November 2008

AM Demodulation

$ r(n)= x(n)*cos^2(n \theta)= \frac{1}{2} x(n) + \frac{1}{2}x(n)*cos(2n\theta) $

$ X(e^{j\theta)) + X(e^{j(\theta) $

Hw9 ECE301Fall2008mboutin.JPG

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood