(Variable Definitions)
Line 14: Line 14:
 
<math>T</math> Sampling Period
 
<math>T</math> Sampling Period
  
<math>\frac{2\pi}/T = \omega_s</math> Sampling Frequency
+
<math>\frac{2\pi}{T} = \omega_s</math> Sampling Frequency
  
 
<math>T < \frac{1}{2}(\frac{2\pi}{\omega_m}) <==> \omega_s>2\omega_m</math>
 
<math>T < \frac{1}{2}(\frac{2\pi}{\omega_m}) <==> \omega_s>2\omega_m</math>

Revision as of 11:13, 10 November 2008

Sampling Theorem

Let $ \omega_m $ be a non-negative number.

Let $ x(t) $ be a signal with $ X(\omega) = 0 $ when $ |\omega| > \omega_m $.

Consider the samples $ x(nT) $ for $ n = 0, +-1, +-2, ... $

If $ T < \frac{1}{2}(\frac{2\pi}{\omega_m}) $ then $ x(t) $ can be uniquely recovered from its samples.


Variable Definitions

$ T $ Sampling Period

$ \frac{2\pi}{T} = \omega_s $ Sampling Frequency

$ T < \frac{1}{2}(\frac{2\pi}{\omega_m}) <==> \omega_s>2\omega_m $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009