(Methods to recover a signal)
Line 3: Line 3:
 
1. Zero-order intapolation (step function)
 
1. Zero-order intapolation (step function)
  
<math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) {u(t-kT)-u[t-(k+1)T]}</math>
+
<math>x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T])</math>
  
[[Image:Zero_order.jpg._ECE301Fall2008mboutin]]  
+
[[Image:Image:Zero_order.jpg._ECE301Fall2008mboutin]]  
  
 
2. First-order intapolation
 
2. First-order intapolation
Line 11: Line 11:
 
<math>x(t)= \sum^{\infty}_{k = -\infty} f_k (t) </math>
 
<math>x(t)= \sum^{\infty}_{k = -\infty} f_k (t) </math>
  
where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_k+1)-x(t_k}{t_k+1 - t_k} for t_k < t < t_k+1 </math>  
+
where <math>f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k}   for t_k < t < t_{k+1} </math>  
  
 
[[Image:First_order.jpg._ECE301Fall2008mboutin]]
 
[[Image:First_order.jpg._ECE301Fall2008mboutin]]

Revision as of 09:23, 10 November 2008

Methods to recover a signal

1. Zero-order intapolation (step function)

$ x(t)= \sum^{\infty}_{k = -\infty} x(kT) (u[t-kT]-u[t-(k+1)T]) $

File:Image:Zero order.jpg. ECE301Fall2008mboutin

2. First-order intapolation

$ x(t)= \sum^{\infty}_{k = -\infty} f_k (t) $

where $ f_k (t)= x(t_k) + (t-t_k) \frac {x(t_{k+1})-x(t_k)}{t_{k+1} - t_k} for t_k < t < t_{k+1} $

File:First order.jpg. ECE301Fall2008mboutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett