(New page: ==Definition== Zero-Order Hold Sampling - The samples of a function are represented by piecewise constant function. In other words, the samples are represented by unit-step function...)
 
(Definition)
 
Line 10: Line 10:
 
         |
 
         |
 
       p(t) = <math> \sum_{n = -\infty}^{\infty}d(t-nT) </math>
 
       p(t) = <math> \sum_{n = -\infty}^{\infty}d(t-nT) </math>
 +
<div style="margin-left: 3em;">
 +
<math>
 +
\begin{align}
 +
h(t) &= {1, when 0 < t < T}\\
 +
    &= {0, else          }\\
 +
\end{align}
 +
</math>

Latest revision as of 12:36, 9 November 2008

Definition

Zero-Order Hold Sampling -

 The samples of a function are represented by piecewise constant function.
 In other words,  the samples are represented by unit-step functions.

x(t) -> X ----> h(t) -> $ x_0(t) $

       ^
       |
     p(t) = $  \sum_{n = -\infty}^{\infty}d(t-nT)  $
$ \begin{align} h(t) &= {1, when 0 < t < T}\\ &= {0, else }\\ \end{align} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn