Line 1: Line 1:
 
Fourier Transform of delta functions
 
Fourier Transform of delta functions
  
<math> x(t) = \delta (t+1) + \delta (t-1) <\math>
+
<math> x(t) = \delta (t+1) + \delta (t-1) </math>
  
<math> X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt <\math>
+
<math> X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt </math>
  
<math> X(\omega) = e^{j \omega}+ e^{-j \omega} = \frac{1}{2} (e^ {j \omega} + e^ {-j \omega})^2 <\math>
+
<math> X(\omega) = e^{j \omega}+ e^{-j \omega} = \frac{1}{2} (e^ {j \omega} + e^ {-j \omega})^2 </math>
  
<math> X(omega) = 2cos(\omega) <\math>
+
<math> X(omega) = 2cos(\omega) </math>

Revision as of 17:11, 24 October 2008

Fourier Transform of delta functions

$ x(t) = \delta (t+1) + \delta (t-1) $

$ X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt $

$ X(\omega) = e^{j \omega}+ e^{-j \omega} = \frac{1}{2} (e^ {j \omega} + e^ {-j \omega})^2 $

$ X(omega) = 2cos(\omega) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett