Line 5: Line 5:
 
<math> X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt </math>
 
<math> X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt </math>
  
<math> X(\omega} = e^{j \ omega}+ e^{-j \omega} = \frac{1}{2} (e^ {j \ omega} + e^ {-j \ omega})^2
+
<math> X(\omega} = e^{j \omega}+ e^{-j \omega} = \frac{1}{2} (e^ {j \ omega} + e^ {-j \ omega})^2

Revision as of 17:08, 24 October 2008

Fourier Transform of delta functions

$ x(t) = \delta (t+1) + \delta (t-1) $

$ X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt $

$ X(\omega} = e^{j \omega}+ e^{-j \omega} = \frac{1}{2} (e^ {j \ omega} + e^ {-j \ omega})^2 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood