Line 3: Line 3:
 
<math> x(t) = \delta (t+1) + \delta (t-1) </math>
 
<math> x(t) = \delta (t+1) + \delta (t-1) </math>
  
<math> X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} </math>
+
<math> X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt </math>

Revision as of 17:06, 24 October 2008

Fourier Transform of delta functions

$ x(t) = \delta (t+1) + \delta (t-1) $

$ X(\omega) = \int_{-\infty}^{\infty} \delta (t+1)e^{-j \omega t} + \int_{-\infty}^{\infty} \delta (t-1)e^{-j \omega t} dt $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach