(→Example) |
(→Example) |
||
Line 4: | Line 4: | ||
=<math>Y(jw)=H(jw)X(jw), H(jw)=\frac{Y(jw)}{X(jw)}</math> | =<math>Y(jw)=H(jw)X(jw), H(jw)=\frac{Y(jw)}{X(jw)}</math> | ||
== Example == | == Example == | ||
− | + | Consider a LTI system that is chracterized by the differential equation. | |
<math> \frac{d^2y(t)}{dt^2}+4\frac{dy(t)}{dt}+3y(t) = \frac{dx(t)}{dt}+2x(t)</math> | <math> \frac{d^2y(t)}{dt^2}+4\frac{dy(t)}{dt}+3y(t) = \frac{dx(t)}{dt}+2x(t)</math> | ||
+ | |||
+ | |||
+ | |||
<math> H(jw)=\frac{(jw)+2}{(jw)^2+4(jw)+3}</math> | <math> H(jw)=\frac{(jw)+2}{(jw)^2+4(jw)+3}</math> |
Revision as of 16:33, 24 October 2008
System Characterized By Linear Constant-Coefficient Differential Equations
$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $
=$ Y(jw)=H(jw)X(jw), H(jw)=\frac{Y(jw)}{X(jw)} $
Example
Consider a LTI system that is chracterized by the differential equation. $ \frac{d^2y(t)}{dt^2}+4\frac{dy(t)}{dt}+3y(t) = \frac{dx(t)}{dt}+2x(t) $
$ H(jw)=\frac{(jw)+2}{(jw)^2+4(jw)+3} $