(System Characterized By Linear Constant-Coefficient Differential Equations)
(Y(jw)=H(jw)X(jw))
Line 3: Line 3:
 
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math>
 
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math>
  
=<math>Y(jw)=H(jw)X(jw)</math>=
+
<math>Y(jw)=H(jw)X(jw)</math>

Revision as of 16:27, 24 October 2008

System Characterized By Linear Constant-Coefficient Differential Equations

$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $

$ Y(jw)=H(jw)X(jw) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood