(System Characterized By Linear Constant-Coefficient Differential Equations)
(System Characterized By Linear Constant-Coefficient Differential Equations)
Line 3: Line 3:
 
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math>
 
<math> \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} </math>
  
<math> Y(jw)=H(jw)X(jw)</math>
+
<math> Y(jw)=H(jw)X(jw)/</math>

Revision as of 16:24, 24 October 2008

System Characterized By Linear Constant-Coefficient Differential Equations

$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $

$ Y(jw)=H(jw)X(jw)/ $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang