(EXERCISE)
(SOLUTION)
 
Line 6: Line 6:
  
 
== SOLUTION ==
 
== SOLUTION ==
<math>X_1(w)=</math>
+
<math>\,\mathcal{X}_1(\omega)=\mathcal{F}(x_1[n])=\sum_{n=-\infty}^{\infty}x_1[n]e^{-j\omega n}\,</math>
 +
 
 +
<math>\,=\sum_{n=-\infty}^{\infty}\alpha^{n}u[n]e^{-j\omega n}\,</math>
 +
 
 +
<math>\,=\sum_{n=0}^{\infty}\alpha^{n}e^{-j\omega n}\,</math>
 +
 
 +
<math>\,=\sum_{n=0}^{\infty}(\alpha e^{-j\omega })^{n}\,</math>
 +
 
 +
but <math>\,|\alpha e^{-j\omega }|<1\,</math>
 +
 
 +
<math>\,=\frac{1}{1-\alpha e^{-j\omega }}\,</math>

Latest revision as of 15:39, 24 October 2008

EXERCISE

Assume $ |\alpha|<1 $

Compute the F.T. of $ x_1[n]=\alpha^{n}u[n] $


SOLUTION

$ \,\mathcal{X}_1(\omega)=\mathcal{F}(x_1[n])=\sum_{n=-\infty}^{\infty}x_1[n]e^{-j\omega n}\, $

$ \,=\sum_{n=-\infty}^{\infty}\alpha^{n}u[n]e^{-j\omega n}\, $

$ \,=\sum_{n=0}^{\infty}\alpha^{n}e^{-j\omega n}\, $

$ \,=\sum_{n=0}^{\infty}(\alpha e^{-j\omega })^{n}\, $

but $ \,|\alpha e^{-j\omega }|<1\, $

$ \,=\frac{1}{1-\alpha e^{-j\omega }}\, $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn