Line 2: Line 2:
 
Compute the Fourier Transform of <math>x(t)=e^{-t}u(t)</math>.
 
Compute the Fourier Transform of <math>x(t)=e^{-t}u(t)</math>.
  
<math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
+
<math>\chi(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
  
 
<math>=\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt</math>
 
<math>=\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt</math>
Line 16: Line 16:
 
<math>=0+\frac {1}{(1+j\omega)}</math>
 
<math>=0+\frac {1}{(1+j\omega)}</math>
  
<math>=\frac {1}{(1+j\omega)}</math>
+
<math>=\frac {1}{1+j\omega}</math>
 +
 
 
==Example 2==
 
==Example 2==
 +
The impulse response of an LTI system is <math>h(t)=e^{-2t}u(t)+u(t+2)-u(t-2)</math>.
 +
What is the Frequency response <math>H(j\omega)</math> of the system?
 +
 +
<math>H(j\omega)=H(\omega)=\int_{-\infty}^{\infty}h(t)e^{-j\omega t}dt=\int_{-\infty}^{\infty}(e^{-2t}u(t)+u(t+2)-u(t-2))e^{-j\omega t}dt=\int_{-\infty}^{\infty}e^{-2t}u(t)e^{-j\omega t}dt+\int_{-\infty}^{\infty}u(t+2)e^{-j\omega t}dt-\int_{-\infty}^{\infty}u(t-2)e^{-j\omega t}dt</math>
 +
 +
Using the previous example and the time shifting property,
 +
 +
<math>H(j\omega)=\frac {1}{2+j\omega}+\frac {2sin(2\omega)}{\omega}</math>
 +
 +
==Example 3==
 +
What is the Fourier Transform of the signal <math>x(t)=e^{j\omega _0t}</math>?
 +
 +
To solve this look at the the inverse Fourier transform, but the inverse transform of what?
 +
 +
Take <math>\chi(\omega)=2\pi\delta(\omega-\omega _0)</math>
 +
 +
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\chi (\omega)e^{j\omega t}d\omega</math>
 +
<math>=\frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi\delta(\omega-\omega _0)e^{j\omega t}d\omega</math>
 +
<math>=\int_{-\infty}^{\infty}\delta(\omega-\omega _0)e^{j\omega t}d\omega</math>
 +
 +
by sifting property,
 +
 +
<math>\int_{-\infty}^{\infty}\delta(\omega-\omega _0)e^{j\omega t}d\omega=e^{j\omega t}|_{\omega=\omega _0}</math>
 +
 +
<math>x(t)=e^{j\omega _0 t}</math>
 +
 +
Thus, the fourier transform of <math>x(t)=e^{j\omega _0t}</math> is <math>\chi(\omega)=2\pi\delta(\omega-\omega _0)</math>.
 +
==Example 4==
 +
Show that the Fourier transform of <math>x(t)=cos(2\pi t)</math> is <math>\chi (\omega)=\pi\delta(\omega+2\pi)+\pi\delta(\omega-2\pi)</math>.

Revision as of 11:20, 21 October 2008

Example 1

Compute the Fourier Transform of $ x(t)=e^{-t}u(t) $.

$ \chi(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ =\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt $

$ =\int_{0}^{\infty}e^{-t}e^{-j\omega t}dt $

$ =\int_{0}^{\infty}e^{-(1+j\omega )t}dt $

$ =[\frac {e^{-(1+j\omega )t}}{-(1+j\omega)}]|_0^\infty $

$ =\frac {e^{-(1+j\omega )\infty}}{-(1+j\omega)}-\frac {e^{-(1+j\omega )0}}{-(1+j\omega)} $

$ =0+\frac {1}{(1+j\omega)} $

$ =\frac {1}{1+j\omega} $

Example 2

The impulse response of an LTI system is $ h(t)=e^{-2t}u(t)+u(t+2)-u(t-2) $. What is the Frequency response $ H(j\omega) $ of the system?

$ H(j\omega)=H(\omega)=\int_{-\infty}^{\infty}h(t)e^{-j\omega t}dt=\int_{-\infty}^{\infty}(e^{-2t}u(t)+u(t+2)-u(t-2))e^{-j\omega t}dt=\int_{-\infty}^{\infty}e^{-2t}u(t)e^{-j\omega t}dt+\int_{-\infty}^{\infty}u(t+2)e^{-j\omega t}dt-\int_{-\infty}^{\infty}u(t-2)e^{-j\omega t}dt $

Using the previous example and the time shifting property,

$ H(j\omega)=\frac {1}{2+j\omega}+\frac {2sin(2\omega)}{\omega} $

Example 3

What is the Fourier Transform of the signal $ x(t)=e^{j\omega _0t} $?

To solve this look at the the inverse Fourier transform, but the inverse transform of what?

Take $ \chi(\omega)=2\pi\delta(\omega-\omega _0) $

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\chi (\omega)e^{j\omega t}d\omega $ $ =\frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi\delta(\omega-\omega _0)e^{j\omega t}d\omega $ $ =\int_{-\infty}^{\infty}\delta(\omega-\omega _0)e^{j\omega t}d\omega $

by sifting property,

$ \int_{-\infty}^{\infty}\delta(\omega-\omega _0)e^{j\omega t}d\omega=e^{j\omega t}|_{\omega=\omega _0} $

$ x(t)=e^{j\omega _0 t} $

Thus, the fourier transform of $ x(t)=e^{j\omega _0t} $ is $ \chi(\omega)=2\pi\delta(\omega-\omega _0) $.

Example 4

Show that the Fourier transform of $ x(t)=cos(2\pi t) $ is $ \chi (\omega)=\pi\delta(\omega+2\pi)+\pi\delta(\omega-2\pi) $.

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett