Line 1: Line 1:
<math>te^{-at}u(t), \text{ where }a\text{ is real,} a>0 \longrightarrow (\frac{1}{a+j\omega})^2 </math>
+
<math>x(t)=te^{-at}u(t), \text{ where }a\text{ is real,} a>0 \longrightarrow {\mathcal X}(\omega)=(\frac{1}{a+j\omega})^2 </math>

Latest revision as of 11:07, 14 November 2008

$ x(t)=te^{-at}u(t), \text{ where }a\text{ is real,} a>0 \longrightarrow {\mathcal X}(\omega)=(\frac{1}{a+j\omega})^2 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood