(Problem 5)
(Problem 5)
Line 12: Line 12:
  
 
<math> = 1 + \frac{1}{z}</math>
 
<math> = 1 + \frac{1}{z}</math>
 +
 +
b) Use your answer in a) to compute the system's response to the input x[n] = cos(<math>\pi</math>n).
 +
 +
<math>x[n] = \sum_{k=<N>}^{}a_ke^{jk(2\pi/N)n}\,</math>
 +
 +
Then the response is
 +
 +
<math>y[n] = \sum_{k=<N>}^{}a_kH(e^{j2\pi k/N})e^{jk(2\pi/N)n}\,</math>

Revision as of 16:45, 15 October 2008

Problem 5

An LTI system has unit impulse response h[n]=u[n]-u[n-2].

a)Compute the system's function H(z).

$ H(z) = \sum_{k=-\infty}^{\infty}h[k]z^{-k}\, $

$ = \sum_{k=-\infty}^{\infty}(u[k]-u[k-2])z^{-k}\, $

$ = \sum_{k=0}^{1}z^{-k}\, $

$ = 1 + \frac{1}{z} $

b) Use your answer in a) to compute the system's response to the input x[n] = cos($ \pi $n).

$ x[n] = \sum_{k=<N>}^{}a_ke^{jk(2\pi/N)n}\, $

Then the response is

$ y[n] = \sum_{k=<N>}^{}a_kH(e^{j2\pi k/N})e^{jk(2\pi/N)n}\, $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett