(New page: == Problem 5 == An LTI system has unit impulse response h[n]=u[n]-u[n-2]. a)Compute the system's function H(z).) |
(→Problem 5) |
||
Line 4: | Line 4: | ||
a)Compute the system's function H(z). | a)Compute the system's function H(z). | ||
+ | |||
+ | <math>H(z) = \sum_{k=-\infty}^{\infty}h[k]z^{-k}\,</math> | ||
+ | |||
+ | <math> = \sum_{k=-\infty}^{\infty}(u[k]-u[k-2])z^{-k}\,</math> | ||
+ | |||
+ | <math> = \sum_{k=0}^{1}z^{-k}\,</math> | ||
+ | |||
+ | <math> = 1 + \frac{1}{z}</math> |
Revision as of 16:27, 15 October 2008
Problem 5
An LTI system has unit impulse response h[n]=u[n]-u[n-2].
a)Compute the system's function H(z).
$ H(z) = \sum_{k=-\infty}^{\infty}h[k]z^{-k}\, $
$ = \sum_{k=-\infty}^{\infty}(u[k]-u[k-2])z^{-k}\, $
$ = \sum_{k=0}^{1}z^{-k}\, $
$ = 1 + \frac{1}{z} $