(New page: ==Problem 5 - Alternate Solution== We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response ...)
 
Line 1: Line 1:
==Problem 5 - Alternate Solution==
+
[[Category: ECE]]
 +
[[Category: ECE 301]]
 +
[[Category: Summer]]
 +
[[Category: 2008]]
 +
[[Category: asan]]
 +
[[Category: Exams]]
 
We are given the input to an LTI system along with the system's impulse response and told to find the output y(t).  Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.
 
We are given the input to an LTI system along with the system's impulse response and told to find the output y(t).  Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.
  

Revision as of 09:15, 21 November 2008

We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.

$ y(t) = h(t) * x(t) = \int_{-\infty}^\infty h(t-\tau)x(t)d\tau $  (COMMUTATIVE PROPERTY)


Plugging in the given x(t) and h(t) values results in:

$ \begin{align} y(t) & = \int_{-\infty}^\infty e^{-(t-\tau)}u(t-\tau)u(\tau-1)d\tau \\ & = \int_1^\infty e^{-(t-\tau)}u(t-\tau)d\tau \\ & = \int_1^{t} e^{-(t-\tau)}d\tau \\ & = e^{-t}\int_1^{t} e^{\tau}d\tau \\ & = e^{-t}(e^{t} - e) \\ & = 1-e^{-(t-1)}\, \mbox{ for } t > 1 \end{align} $


Since x(t) = 0 when t < 1:

$ y(t) = 0\, \mbox{ for } t < 1 $


$ \therefore y(t) = \begin{cases} 1-e^{-(t-1)}, & \mbox{if }t\mbox{ is} > 1 \\ 0, & \mbox{if }t\mbox{ is} < 1 \end{cases} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn