(New page: Is the signal <math>\ x(t) = \sum_{k = - \infty}^{\infty} \frac{1}{(t + 2k)^{2} + 1}</math> periodic? Answer yes/no and justify your answer mathematically. Yes, because <math>x(t + 2)...)
 
 
Line 8: Line 8:
 
Yes, because <math>x(t + 2) = \sum_{k = - \infty}^{\infty} \frac{1}{(t + 2 + 2k)^{2} + 1} = \sum_{k = - \infty}^{\infty} \frac{1}{(t + 2 (k + 1))^{2} + 1}</math>
 
Yes, because <math>x(t + 2) = \sum_{k = - \infty}^{\infty} \frac{1}{(t + 2 + 2k)^{2} + 1} = \sum_{k = - \infty}^{\infty} \frac{1}{(t + 2 (k + 1))^{2} + 1}</math>
  
let <math>\ r = k + 1, \sum_{k = - \infty}^{\infty} \frac{1}{(t + 2r)^{2} + 1} = x(t)</math>
+
let <math>\ r = k + 1, \sum_{r = - \infty}^{\infty} \frac{1}{(t + 2r)^{2} + 1} = x(t)</math>

Latest revision as of 13:52, 15 October 2008

Is the signal

$ \ x(t) = \sum_{k = - \infty}^{\infty} \frac{1}{(t + 2k)^{2} + 1} $


periodic? Answer yes/no and justify your answer mathematically.

Yes, because $ x(t + 2) = \sum_{k = - \infty}^{\infty} \frac{1}{(t + 2 + 2k)^{2} + 1} = \sum_{k = - \infty}^{\infty} \frac{1}{(t + 2 (k + 1))^{2} + 1} $

let $ \ r = k + 1, \sum_{r = - \infty}^{\infty} \frac{1}{(t + 2r)^{2} + 1} = x(t) $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett