(solution)
(solution)
Line 9: Line 9:
 
<math> y[n]=\sum^{\infty}_{k=-\infty}2^{k}u[-k]u[n-k]</math>
 
<math> y[n]=\sum^{\infty}_{k=-\infty}2^{k}u[-k]u[n-k]</math>
  
<math> n[-k] = 1  -k>=0,    k<=0</math>
+
n[-k] = 1  -k>=0
 +
k<=0
  
 
<math> y[n]=\sum^{0}_{k=-\infty}2^{k}u[n-k]</math>
 
<math> y[n]=\sum^{0}_{k=-\infty}2^{k}u[n-k]</math>

Revision as of 09:49, 15 October 2008

question

3. An LTI system has unit impulse response $ h[n]=u[-n] $ Compute the system's response to the input $ x[n]=2^{n}u[-n]. $(Simplify your answer until all \sum signs disappear.)

solution

$ y[n]=x[n]*h[n] $

$ y[n]=\sum^{\infty}_{k=-\infty}x[n]*h[n-k] $

$ y[n]=\sum^{\infty}_{k=-\infty}2^{k}u[-k]u[n-k] $

n[-k] = 1 -k>=0 k<=0

$ y[n]=\sum^{0}_{k=-\infty}2^{k}u[n-k] $

$ \sum^{0}_{k=n}2^{k}, n<=0 $

0, else

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin