Line 1: Line 1:
<math>(2) \sum^{\infty}_{n=-\infty} \delta(t-nT) -> \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\,</math>. . . . . . . . . . . . . .    . . . . . .  . . .''','''
+
<math>(2) \sum^{\infty}_{n=-\infty} \delta(t-nT) -> \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\,</math>. . . . . . . . . . . . . .    . . . . . .  . . .''',''' <math>a_{k}=\frac{1}{T}</math> for all k

Revision as of 17:13, 14 October 2008

$ (2) \sum^{\infty}_{n=-\infty} \delta(t-nT) -> \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\, $. . . . . . . . . . . . . . . . . . . . . . ., $ a_{k}=\frac{1}{T} $ for all k

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman