(New page: ==Question 4== Compute the coefficients <math>a_k</math> of the Fourier series of the signal <math>x(t)</math> periodic with period <math>T=4</math> defined by <math>\,x(t)=\left\{\begin...)
 
(Question 4)
 
Line 10: Line 10:
 
(Simplify your answer as much as possible.)
 
(Simplify your answer as much as possible.)
  
 
+
==Solution==
 
We first started by finding <math>a_0 \,</math>. We notice that the <math>x(t) = 1\,</math> for half of the time, while <math>x(t) = 0\,</math> for half of the time.  
 
We first started by finding <math>a_0 \,</math>. We notice that the <math>x(t) = 1\,</math> for half of the time, while <math>x(t) = 0\,</math> for half of the time.  
 
Thus, the average of the signal, <math>a_0 = \frac{1}{2}\,</math>
 
Thus, the average of the signal, <math>a_0 = \frac{1}{2}\,</math>

Latest revision as of 06:39, 14 October 2008

Question 4

Compute the coefficients $ a_k $ of the Fourier series of the signal $ x(t) $ periodic with period $ T=4 $ defined by

$ \,x(t)=\left\{\begin{array}{cc} 0, & -2<t<-1 \\ 1, & -1\leq t\leq 1 \\ 0, & 1<t\leq 2 \end{array} \right. \, $

(Simplify your answer as much as possible.)

Solution

We first started by finding $ a_0 \, $. We notice that the $ x(t) = 1\, $ for half of the time, while $ x(t) = 0\, $ for half of the time. Thus, the average of the signal, $ a_0 = \frac{1}{2}\, $

Mathematical Proof:

$ a_0=\frac{1}{4}\int_{-2}^{2}x(t) dt\, $

$ a_0=\frac{1}{4}\int_{-1}^{1}1 dt\, $

$ a_0=\frac{1}{4} t |^1_{-1}\, $

$ a_0=(\frac{1}{4})2 \, $

$ a_0=\frac{1}{2}\, $

Next, we procede to calculate $ a_k\, $ Notice that the fourier transformation of a square signal is made up from sin waves with infinite number of $ a_k\, $ to produce a perfect signal. Thus $ -\infty < k < \infty \, $

$ \omega _o = \frac{2 \pi} {4} = \frac{\pi}{2}\, $

$ a_k=\frac{1}{4}\int_{-2}^{2}x(t)e^{-jk\frac{\pi}{2}t}dt\, $

$ a_k=\frac{1}{4}\int_{-1}^{1}e^{-jk\frac{\pi}{2}t} dt + \frac{1}{4}\int_{1}^{2}0 dt + \frac{1}{4}\int_{-2}^{-1}0 dt\, $

The offset of the graph is zero, thus:

$ a_k=\frac{1}{4}\int_{-1}^{1}e^{-jk\frac{\pi}{2}t} dt \, $

$ a_k=\frac{1}{4} \left.\frac{1}{-jk\frac{\pi}{2}}e^{-jk\frac{\pi}{2}t}\right|_{-1}^{1}\, $

$ a_k=\frac{-1}{jk2\pi}(e^{-jk\frac{\pi}{2}} - e^{jk\frac{\pi}{2}})\, $

$ a_k=\frac{1}{k\pi}(\frac{e^{jk\frac{\pi}{2}} - e^{-jk\frac{\pi}{2}}}{2j})\, $

$ a_k=\frac{1}{k\pi}\sin(k\frac{\pi}{2})\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett