(New page: If <math>\{a_1,a_2,...,a_n\}</math> is arithmetic, then <math>\sum_{i=1}^n a_i = \frac{n(a_1 + a_n)}{2}</math>)
 
m
 
Line 1: Line 1:
If <math>\{a_1,a_2,...,a_n\}</math> is arithmetic, then <math>\sum_{i=1}^n a_i = \frac{n(a_1 + a_n)}{2}</math>
+
If <math>\{a_1,a_2,...,a_n\}</math> is an arithmetic series, then <math>\sum_{i=1}^n a_i = \frac{n(a_1 + a_n)}{2}</math>

Latest revision as of 14:23, 9 October 2008

If $ \{a_1,a_2,...,a_n\} $ is an arithmetic series, then $ \sum_{i=1}^n a_i = \frac{n(a_1 + a_n)}{2} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood